

CO₂ capture by hybrid chemo-enzymatic process

Luleå University of Technology, Sweden - LTU

Dr. lo Antonopoulou Associate senior lecturer

Horizon 2020 European Union Funding for Research & Innovation This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 760431.

CO₂ capture as a measure against climate change

European Green Deal: Carbon-neutral by 2050

 The role of carbon capture in reaching the EU's long-term emissions reduction goal is acknowledged

Sweden's Climate Act and Climate Policy Framework: Zero-net emissions by 2045

- 85% lower than in 1990
- Rest 15% through supplementary measures, such as CCS

Amine-based CO₂ capture: Current gold standard

Monoethanolamine (MEA)

Reactions:

 $\begin{array}{l} R_1R_2NH + CO_2 \leftrightarrow R_1R_2NH^+COO^- \ (zwitterion) \\ R_1R_2NH^+COO^- + B \leftrightarrow R_1R_2NCOO^- \ (carbamate) + BH^+ \\ R_1R_2NCOO^- + H_2O \leftrightarrow R_1R_2NH + HCO_3^- \ (bicarbonate) \end{array}$

Where R_2 is a hydrogen for primary amines and B base

Amine-based CO₂ capture: Alternative solvent

Methyl diethanolamine (MDEA)


```
Reactions:

R_1R_2R_3N + CO_2 + H_2O \leftrightarrow R_1R_2R_3NH^+ + HCO_3^-

(bicarbonate)
```


Enzymatic CO₂ capture

Carbonic anhydrase (CA)

Reaction: $CO_2 + H_2O \leftrightarrow H^+ + HCO_3^-$ (bicarbonate)

- was first discovered in vertebrate erythrocytes in the 1930s
- can be found in many organisms (humans, animals, bacteria...)
- is one of the fastest enzymes in nature (turnover up to 10⁷ s⁻¹)

Online webinar, lo Antonopoulou, LTU 23 November 2021

BioRECOVER

Chemo-enzymatic CO₂ capture

Tertiary-amine based solvent + Carbonic anhydrase (CA)

Predominant reactions:

 $CO_2 + H_2O \leftrightarrow R_1R_2R_3NH^+ + HCO_3$ (bicarbonate) $CO_2 + H_2O \leftrightarrow H^+ + HCO_3$ (bicarbonate)

Challenges to overcome

L

Compatibility of enzymes with operating conditions:

- Thermal stability: introduction of free enzymes in the absorption (40-60°C) and if possible stripping column (80-110°C). Most known available CAs are mesophilic
- **Solvent stability:** enzymes need to be incubated with amines, novel solvents with good enzyme compatibility is desired
- Inhibitor stability: flue gas with impurities (NOx, SOx) is used in reality that can have inhibitory action
- **Cost effectiveness:** enzyme production is expensive, we need to reuse them, thus immobilization is often a requirement

General concept

Stages in technology development

Enzyme selection

Ultrastable CA variant from Desulfovibrio vulgaris (DvCA8.0)

Enzyme engineering method:

saturation mutagenesis/combinatorial

Enzyme properties:

- tolerate temperatures of up to 107 °C in the presence of 4.2 M alkaline amine solvent at pH >10.0
- the evolved catalyst enhanced the rate of CO₂ absorption 25-fold compared with the noncatalyzed reaction

Alvizo et al. (2014) Directed evolution of an ultrastable carbonic anhydrase for highly efficient carbon capture from flue gas. PNAS 111 (46) 16436-16441

Enzyme engineering

Further CA improvement aiming to increase resistance to major gas inhibitors:

Library construction:

1000 epCA variants generated with error-prone PCR **Library screening:**

-Primary screening to select active variants

-Secondary screening to select variants with resistance to inhibitors

Scaled-up production of most promising variants Sequencing for identification of mutations

 3 mutants showed 50% resistance increase to flue gas inhibitors (mix of NO₂⁻,NO₃⁻,SO₃⁻²,SO₄⁻²)

Online webinar, lo Antonopoulou, LTU 23 November 2021

Enzyme immobilization

Up to 90% residual enzyme activity after immobilization but...

Few immobilized forms showed good activity in CO₂ capture integrated with amines

Solvent development

Novel hybrid solvent: aminoacid ionic liquid (AAIL): amine blend (PEHAp: MDEA)

Pentaethylenehexamine prolinate (PEHAp)

Solvent development

2-times higher regeneration than MEA

Sjöblom et al. (2020) Enzyme-assisted CO₂ absorption in aqueous amino acid ionic liquid amine blends. ACS Sustainable Chemistry and Engineering, 8(36), 13672-13682

Best hybrid: 5% PEHAp: 20% MDEA

80

60

40

Time (min)

100

BioRECOVER Chemo-enzymatic CO₂ capture in small scale

Integrated approach: 5% PEHAp 20% MDEA+CA

Small-scale reaction: 100 mL

CO₂ absorption (40°C)

Sjöblom et al. (2020) Enzyme-assisted CO_2 absorption in aqueous amino acid ionic liquid amine blends. ACS Sustainable Chemistry and Engineering, 8(36), 13672-13682

31.7% further increase in the mass of absorbed

CO₂ compared to the noncatalyzed reaction

BioRECOVER Chemo-enzymatic CO₂ capture in small scale

Integrated approach: 5% PEHAp 20% MDEA+CA

Small-scale reaction: 100 mL

CO₂ desorption (80°C)

Solvent	Solvent
	regeneration (%)
25% MEA	35.4
5% PEHAp 20% MDEA	81.1
5% PEHAp 20% MDEA+ CA	83.0

No difference in desorbed mass of CO₂ after CA addition in the novel hybrid solvent

Sjöblom et al. (2020) Enzyme-assisted CO_2 absorption in aqueous amino acid ionic liquid amine blends. ACS Sustainable Chemistry and Engineering, 8(36), 13672-13682

BioRECOVER Scale-up and treatment of industrial flue gas

CO₂ capture using a packed column (1 m) Up to 100 L solvent capacity

A) CHE626 Automated Absorption and Stripping Pilot Plant and B) CH906 Hot Water Generator (HFT Global Ltd, Derbyshire, UK) at LTU. CO₂ absorption (40°C)

Initial absorption rate:

- 5 times higher than MDEA
- 82% of that of MEA

Achievements and future goals

L

We aimed to:

- Combine enzymatic absorption with ionic liquid-amine blends
- Reduce energy and cost of CO₂ capture up to 25%
- Increase process impurity resistance
- Provide a 95% yield concentrated CO₂ gas stream

Future goals:

• Expand our enzyme portfolio and further investigate integration between conventional and sustainable technologies for a carbon neutral future

Acknowledgments

The LTU team:

Prof. Paul Christakopoulos

Prof. Ulrika Rova

Ayanne de Oliveira Maciel Intern/ PhD student

Myrna Cortés Hernández Research engineer

Dr. Magnus Sjöblom

Dr. Simona Varriale

Thank you for your attention!

Horizon 2020 European Union Funding for Research & Innovation

BioRECOVER

The sole responsibility for the content of this dissemination and communication activity lies with the authors. It does not necessarily reflect the opinion of the European Union (EU) Horizon 2020. The EU is not responsible for any use that may be made of the information contained therein.