

Life Cycle Assessment of CO₂-based products

Niels de Beus, Online webinar, 23 November 2021

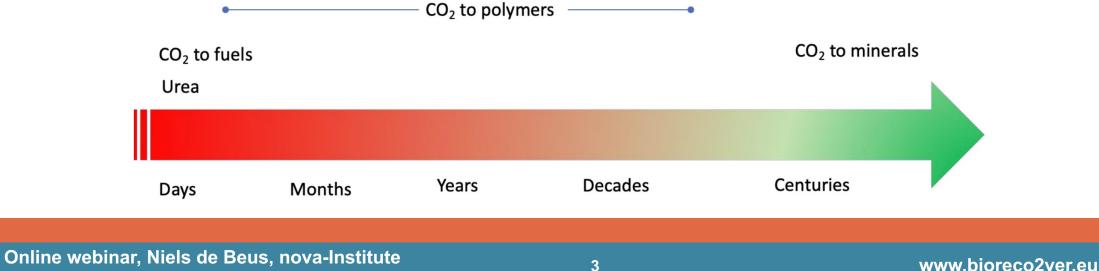
Horizon 2020 European Union Funding for Research & Innovation This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 760431.

What is Life Cycle Assessment?

 Method to assess the potential environmental impact of a product or service throughout its entire life cycle. That is, from the supply of raw materials and production, to use, disposal or end-of-life waste management (cradle-to-grave)

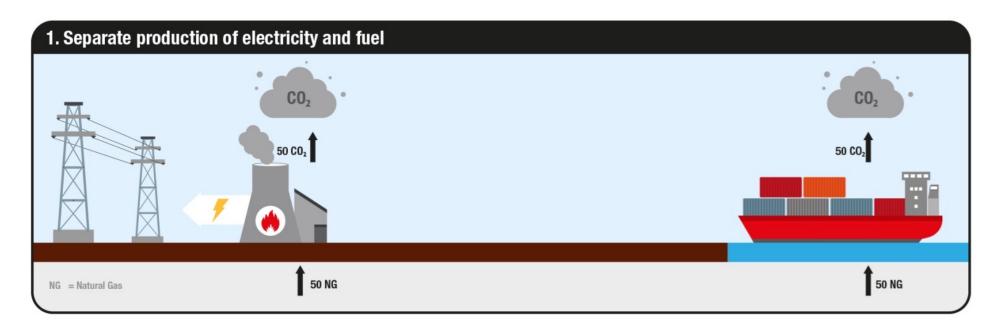
BioRECOVER

- It is an internationally standardised method under ISO 14040 and ISO 14044
- LCA assesses environmental impacts, such as global warming potential or eutrophication over the life cycle of a product or service, as well as the impacts on natural resources and/or human health



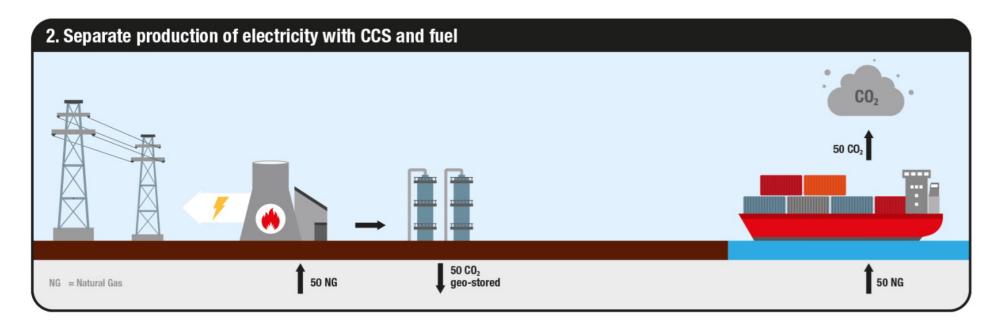
CCU (Carbon Capture and Utilization): Delayed emissions

- Delayed emissions of high relevance for CCU \rightarrow CO₂ is used instead of released, but how long is the delay? For fuels, only a few months? For plastics, 20-30 or more years?
- Different ways to consider delayed emissions \rightarrow recommendations differ from complex scientific calculations to 500-year horizons as a minimum threshold
 - Few to none CCU applications bind carbon for >500 years
- Other way of thinking: If the CCU product replaces a product derived from fossil resources, we have a substitution



System expansion: Production of electricity and fuel

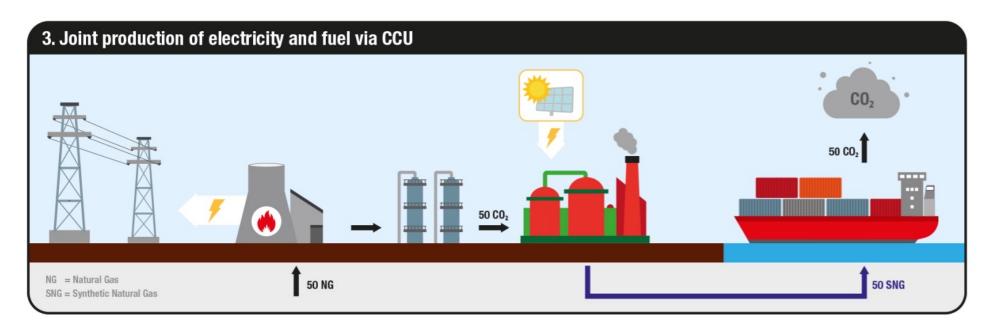
(The figures model ideal conditions without losses (100% efficiency))


Separate fossil electricity and fossil fuel production result in maximum GHG emissions ($50 + 50 CO_2 = 100 CO_2$)

System expansion: Production of electricity and fuel

(The figures model ideal conditions without losses (100% efficiency))

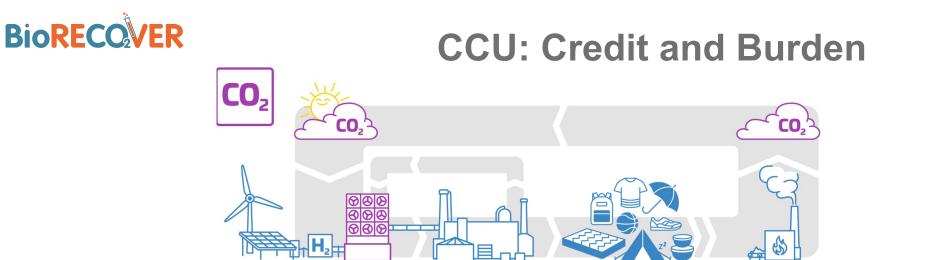
Carbon Capture and Sequestration (CCS) reduces the total CO_2 emissions by 50%.


Online webinar, Niels de Beus, nova-Institute

System expansion: Production of electricity and fuel

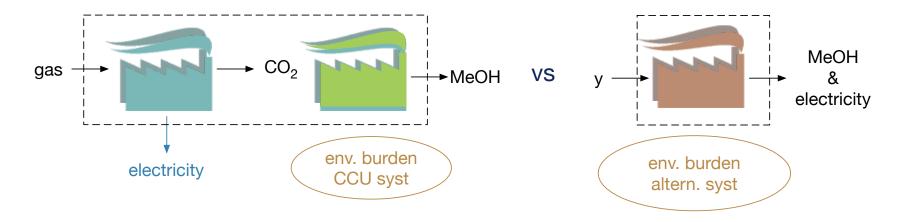
(The figures model ideal conditions without losses (100% efficiency))

Carbon Capture and Utilization (CCU) also reduces total CO₂ emissions by 50% by using emissions from electricity production to produce fuels and substituting fossil natural gas (NG).

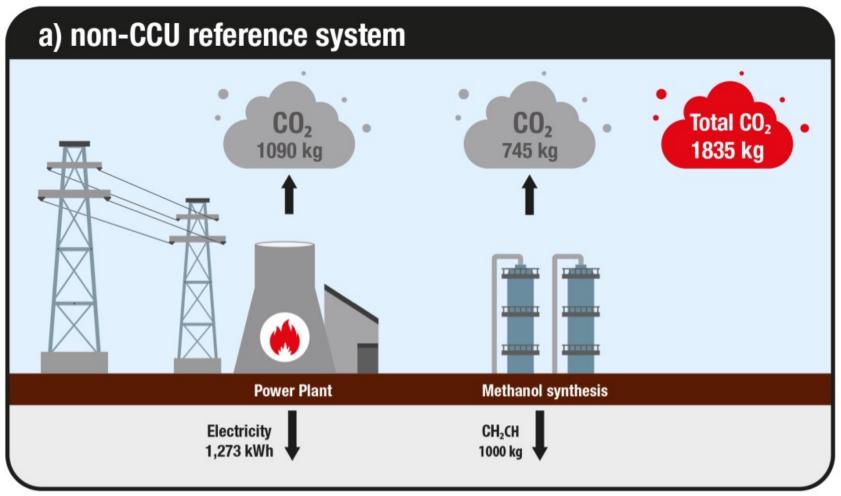


CCU: Electricity

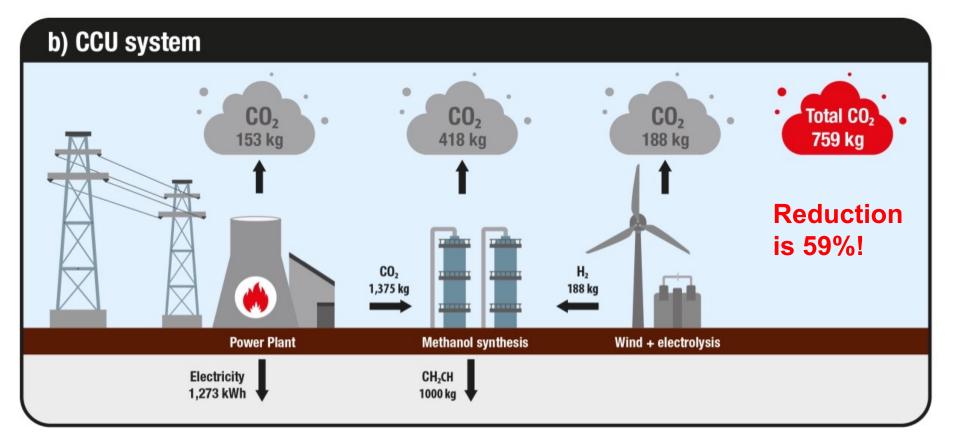
- CO₂ from industrial sources is rarely a pure stream, but rather a mixture
- CO₂ is a naturally **stable** chemical, which often requires further processing steps.
- This usually requires additional energy/electricity for purification and utilisation
- The additional electricity will be allocated to the process and causes additional environmental impacts
- Dependent on the grid mix this can lead to higher emissions than what was avoided by CCU
- Running process on additional (produced on-site or purchased additionally) renewable energy is therefore
 often necessary
- Purchased additionally
 - RE currently limited, where to use it for maximum efficie
 - Purchased green electricity lowers RE in the grid mix
- Producing on site
 - Constructing required RE plants to cover energy needs a good, but expensive solution


- Utilizing CO₂ has some peculiarities that have to be considered within the context of BioRECO₂VER:
 - By definition, CO₂ is an elementary feedstock for CCU plants. At the same time, it also contributes to a fundamental impact category (global warming potential, GWP)
 - For the emitting plant, CO₂ is typically not the main product, often rather an undesired side product.
 - Upon utilisation of the CO₂ instead of emitting it to the atmosphere, it is of relevance who gets the credit for reduction in CO₂ emission or, in LCA terms words, how to allocate the CO₂ emission reduction between emitter and receiver of CO₂.
 - Because the CO₂ is usually a side product / waste from another process, multi-functionality occurs → More than one product (e.g. product from the original process and CCU product)

CCU: Credit and Burden System expansion


- System expansion: comparison between CCU system (end-products) & a system with the same functions
 - Clearly determines environmental impact reductions
 - Strictly reflects physical relations ships
 - Can be complex
 - No product-specific assessment of the CO₂

Example: Seperate production of electricity and methanol



Online webinar, Niels de Beus, nova-Institute: Von der Assen, N., Voll, P., Peters, M. and Andre Bardow, A.: LCAof CO₂ capture and utilization: a tutorial review. Chem. Soc. Rev. 2014-01-20.

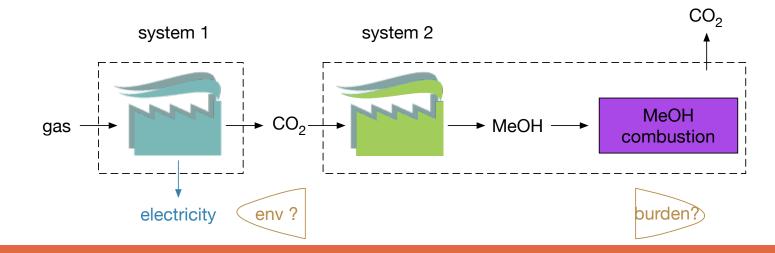
BioRECOVER

Example: Joint production of electricity and methanol via CCU & wind energy)

Online webinar, Niels de Beus, nova-Institute Source: Von der Assen, N., Voll, P., Peters, M. and Andre Bardow, A.: LCAof CO₂ capture and utilization: a tutorial review. Chem. Soc. Rev. 2014-01-20.

CCU: Credit and Burden Crediting

- Substitution (Avoided burden / credits)
 - Assigns all environmental burdens to a defined main function.
 - CCU would receive full burden of the process, but at the same time also receive credits for avoided production of the other product (here electricity) that would otherwise be provided through an alternative route



Credit and Burden of CCU: Allocation

Allocation

- Environmental burden of is split between system 1 (electricity) & system 2 (MeOH)
- How to split? Most common suggestions are
 - 100:0 (giving merit to the CCU plant)
 - 50:50 (even split to provide incentives to both parties)
 - 0:100 (could be meaningful in an increasingly defossilised system (CO₂ valuable)

Comparison of different jet fuel feedstocks and pathways – CCU jet fuel is the best

	Jet fuel yield (GJ/ha*y)	GHG emissions without LUC (g CO ₂ eq/MJ fuel)	GHG emissions with dLUC (g CO ₂ eq/MJ fuel)	Green + blue water demand (m ³ /GJ)
Crude oil		87.5		
Natural gas		101		
Rapeseed oil		55	98	
Jatropha oil (HEFA)	15 - 50	39		574
Palm oil (HEFA)	162	30	40 - 700	150
Algae oil (HEFA)	156 - 402	51		14 - 53
SRC (short rotation coppice)	47 - 171	18	- 2	112
PtL (solar)	580 - 1070			
PtL (wind)	470 - 1040	1 – 28 (*)		0.04 - 0.08

Summary, based on: Schmidt, P. et al. 2018: Power-to-Liquids as Renewable Fuel Option for Aviation: A Review. In: Chem. Ing. Tech. 2018, 90, No. 1-2, 127-140. / (*): In a today's mainly fossil energy landscape in material sourcing and construction.

Online webinar, Niels de Beus, nova-Institute

Main take-aways LCA of CCU

- CCU can be a relevant option for climate change mitigation
 - through substituting fossil C or circulating atmospheric/bio-based C
- A critical issue to consider are the (usually large) required amounts of energy to transform the CO₂
- There is no standardised agreement on who receives credit for avoided emissions via CCU
- There are different methods to allocate environmental burdens
 between multiple functions/products
 - can lead to quite different results, **careful with comparisons!**

Thank you for your attention!

Horizon 2020 European Union Funding for Research & Innovation

BioRECOVER

The sole responsibility for the content of this dissemination and communication activity lies with the authors. It does not necessarily reflect the opinion of the European Union (EU) Horizon 2020. The EU is not responsible for any use that may be made of the information contained therein.