

Welcome to:

23 Nov 2021 | 14:00 - 17:00 CET

www.bioreco2ver.eu

Practical information

- Questions: Please type your questions in Q&A window and address to specific speaker by starting with @speaker name
- **Survey**: Please answer a few general questions in survey (before break)
- Presentation-Slides: Presented materials will be available for download on the project website <u>www.bioreco2ver.eu</u>

Agenda

Time	Title	Presenter
14.00	Introduction to the workshop and BioRECO ₂ VER project	Heleen De Wever, VITO
14.10	Current market situation: CO ₂ as chemical feedstock for polymers	Pauline Ruiz, nova-Institute
14.25	CO ₂ capture by hybrid chemo-enzymatic process	Io Antonopoulou, Luleå University of Technology
14.40	New microbial platforms for CO ₂ conversion	Giuliana d'Ippolito, National Research Council Italy
15.05	Bio-electrochemistry for CO ₂ conversion	Sebastià Puig, University of Girona
15.20	(Pressurized) fermentation for CO ₂ conversion	Heleen De Wever, VITO - Jean-Luc Dubois, Arkema
15.35	Break	
15.45	Process and metabolic modelling and Multidisciplinary Design Optimization	Álvaro Cabeza, IDENER Scientific Computing
16.00	LCA and social acceptance of CO ₂ -based products	Niels de Beus, nova-Institute
16.15	Biological methanation: An industrial-scale application for energy storage, CO_2 reuse and renewable fuel	Jose Rodrigo Quejigo, Electrochaea
16.30	Carbon Capture and Utilization and the EU policy context	Anastasios Perimenis, CO ₂ Value Europe
16.45	Q&A	
17.00	End of workshop	

Introduction to the workshop and BioRECO₂VER project

Heleen De Wever and project partners, Online webinar, 23 November 2021

Horizon 2020 European Union Funding for Research & Innovation This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 760431.

BioRECOVER

Carbon Capture and Utilization (CCU)

Source: https://www.co2value.eu/ccu/

BioRECOVER

Why biotechnology?

Chemocatalysis	Biotechnology		
 (Precious) Metal catalysts – Replacement/recycling 	Whole cell catalysts - Self reproducing		
 Reactions at high temperatures and pressures 	Reaction at milder/ambient conditions		
Broader range of optimal conditions	(safety, sustainability)		
 Low specificity/selectivity of the catalysts 	 High specificity/selectivity 		
Usually C1 chemicals	 Also more complex molecules 		
Gas phase reaction	Aqueous media		
High conversion rates	 Low productivity / turnover rates 		
 Product concentration high 	 Products in dilute (aqueous) stream 		
	(and sensitive to product toxicity)		
Low tolerance to contaminants or variations gas	High tolerance for gas impurities and		
composition \rightarrow gas pre-treatment/conditioning	variations in gas composition		
	Sources: Lee et al. (2019), Köpke and Simpson (2020), Refai (2021)		

Overall project concept

Overall project concept

Overall project concept

Microbial CO₂ conversion

• 2 technologies

Bioelectrochemical systems

Online webinar, Heleen De Wever, VITO 23 November 2021

BioRECOVER

Microbial CO₂ conversion

• 3 microbial platforms

Microbial platforms		T range	O ₂ tolerance	Target product	Partner
Autotrophic	Clostridial strain	Mesophilic	Anaerobic	Isobutene	GLOBAL BIOENERGIES
	Cupriavidus necator	Mesophilic	Aerobic	Lactate	EnobraQ
Capnophilic	Thermotoga neapolitana	Hyper- thermophilic	Strictly anaerobic	Lactate + H ₂	Consiglio Nazionale delle Ricerche

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No. 760431.

Thank you for your attention!

Contact: heleen.dewever@vito.be

Publications

-W. Van Hecke; R. Bockrath; H. De Wever (2019): Effects of moderately elevated pressure on gas fermentation processes, DOI: 10.1016/j.biortech.2019.122129

-V. Luongo; A. Palma; E. R. Rene; A. Fontana; F. Pirozzi; G. Espositio; P. N.L. Lens (2018): Lactic acid recovery from a model of Thermotoga neapolitana fermentation broth using ion exchange resins in batch and fixed-bed reactors, DOI:10.1080/01496395.2018.1520727

-G. Dreschke, G. d'Ippolito, A. Panico, P. N.L. Lens, G. Esposito, A. Fontana (2018): Enhancement of hydrogen production rate by high biomass concentrations of Thermotoga neapolitana, DOI: 10.5281/zenodo.3247830

-G. Nuzzo; S. Landi; E. Nunzia; E. Manzo; A. Fontana; G. d'Ippolito (2019): Capnophilic Lactic Fermentation from Thermotoga neapolitana: A Resourceful Pathway to Obtain Almost Enantiopure L-lactic Acid, DOI: 10.3390/fermentation5020034

-N. Pradhan; G. d'Ippolito; L. Dipasquale; G. Esposito; A. Panico; P.N.L. Lens; A. Fontana (2019): Simultaneous synthesis of lactic acid and hydrogen from sugars via capnophilic lactic fermentation by Thermotoga neapolitana cf capnolactica, DOI: 10.5281/zenodo.3247821

Horizon 2020 European Union Funding for Research & Innovation

BioRECOVER

The sole responsibility for the content of this dissemination and communication activity lies with the authors. It does not necessarily reflect the opinion of the European Union (EU) Horizon 2020. The EU is not responsible for any use that may be made of the information contained therein.